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Decline in metabolism and regenerative potential of tissues are common characteristics of aging. Regeneration is
maintained by somatic stem cells (SSCs), which require tightly controlled energy metabolism and genomic integ-
rity for their homeostasis. Recent data indicate that mitochondrial dysfunction may compromise this homeosta-
sis, and thereby contribute to tissue degeneration and aging. Progeroid Mutator mouse, accumulating random
mtDNA point mutations in their SSCs, showed disturbed SSC homeostasis, emphasizing the importance of
Keywords: mtDNA integrity for stem cells. The mechanism involved changes in cellular redox-environment, including subtle
Mitochondria increase in reactive oxygen species (H,0, and superoxide anion), which did not cause oxidative damage, but
Aging disrupted SSC function. Mitochondrial metabolism appears therefore to be an important regulator of SSC fate de-
Stem cells termination, and defects in it in SSCs may underlie premature aging. Here we review the current knowledge of
mtDNA mitochondrial contribution to SSC dysfunction and aging. This article is part of a Special Issue entitled: Mitochon-

Redox balance drial Dysfunction in Aging.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Stem cells are characterized by two main properties: 1) ability to
produce variable independent cell types, i.e. multipotency; 2) ability
to self-renew, i.e. to produce an identical multipotent daughter cell.
Stem cells can undergo symmetrical cell division, producing two
identical stem cells, or asymmetrical division, resulting in one
stem cell and one committed progenitor cell [1]. Progenitor cells
have transient amplification capacity with limited lifespan, and
they cannot self-renew. Stem cells are classified based on their dif-
ferentiation capacity: pluripotent stem cells, such as embryonic
stem cells (ES cells), can produce all the cell types of the embryo
proper [2], and multipotent cells, such as somatic stem cells (SSCs)
can give rise to the cell types of the tissue in which they reside. Nu-
clear reprogramming can turn somatic cells to pluripotent stem
cells. These induced pluripotent stem (iPS) cells have similar charac-
teristics as ES cells [3,4]. Multipotent SSCs have been characterized
in several adult tissues where they serve an important purpose in
tissue regeneration and maintenance of function throughout the
lifetime of an organism. SSCs are especially essential in actively
renewing cell types, such as the blood and skin, where they con-
stantly replenish dying cells. These tissues are very sensitive for
SSC dysfunction [5,6]. In post-mitotic tissues, such as the brain and
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muscle, SSCs are thought to be activated mainly for growth and tis-
sue repair, but quiescent under normal physiological conditions [7,
8]. In rodents, continuous flow of neural progenitors feeds the olfac-
tory bulb, leading to net-growth of this brain region during life [9].
In humans, radioisotope-tracing studies have suggested little
neurogenesis during normal human life, but specific brain areas
and disease/trauma-induced neurogenesis may be exceptions to
this rule [10-14]. Deficient proliferation of somatic stem and pro-
genitor cells is deleterious for tissue maintenance, but also increased
proliferation can be harmful and accelerate exhaustion of stem cell
pools. Indeed, stem cell quiescence is essential for maintaining func-
tionality and regenerative capacity of stem cell compartment.
Mitochondria are the power plants of the cell and their respiratory
chain (RC) provides chemical energy for cells and tissues in the form
of ATP through cellular respiration. Decreasing RC function is associated
with aging [15]. According to Harman's mitochondrial free radical theo-
ry of aging, RC dysfunction is due to oxidative stress within the organ-
elle, leading to accumulation of mitochondrial DNA (mtDNA)
mutations, dysfunctional OXPHOS proteins, increased production of su-
peroxide, and a vicious cycle of oxidative stress. This accelerates mtDNA
mutagenesis and further deteriorates mitochondrial function [16]. This
vicious cycle has been proposed to cause damage to biomolecules and
thus disturb cellular function and lead to degenerative changes [16].
MtDNA Mutator mice, carrying a proof-reading deficient mitochondrial
DNA polymerase gamma (PolG) and accumulating random mtDNA
point mutations, were the first to directly test Harman's hypothesis. In-
deed, these mice developed progeroid syndrome with gray hair, osteo-
porosis, thin skin, anemia, premature cease of fecundity and shortened
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lifespan, signs associated with advancing age [17,18]. However, surpris-
ingly, despite mtDNA mutagenesis, these mice showed little or no evi-
dence for increased reactive oxygen species (ROS) or the proposed
vicious cycle. Accumulation of postnatal mtDNA mutations in Mutators
was linear instead of exponential, and the original articles describing
these mice reported no oxidative damage in their heart, liver or skeletal
muscle [17,18].

2. Mitochondrial integrity is essential for maintaining SSC
homeostasis

MtDNA Mutator mice did not present with symptoms typical for
mitochondrial disease or other mouse models for mitochondrial dys-
function [19]. However, they closely resembled other mouse models
with progeria, caused by defects in nuclear DNA repair and previously
connected to dysfunction of SSCs [20,21]. This raised the question,
whether mtDNA mutagenesis in Mutator mice could affect stem cell
homeostasis. Indeed, these mice showed hematopoietic, neural and in-
testinal stem cell dysfunction [22-25], starting during early fetal devel-
opment [23], whereas any symptoms from post-mitotic tissues
manifested only after 6 months of age [17,18]. Further, the most severe-
ly affected tissues were those actively renewing and maintained by
somatic stem cells.

The lifespan of Mutator mice is shortened because of severe anemia,
which suggested dysfunctional hematopoietic system [22,23,25].
Mutator hematopoietic stem cells (HSC) manifested with many features
resembling human HSC aging. They showed progressively decreasing
repopulation activity and myeloid bias in differentiation [22,25], similar
to other progerias and normally aging mammals [20,21,26]. The HSC de-
fect was cell-intrinsic, as irradiated WT animals recapitulated the
Mutator blood phenotype when transplanted with HSCs from Mutator
bone marrow [25]. Reconstitution of WT bone marrow with Mutator
HSCs led to severe myeloid bias in the recipients. The lineage contribu-
tion of transplanted young Mutator HSCs was similar to aged WT
HSCs, whereas transplantation of HSCs from mid-aged Mutators result-
ed in myeloid over-representation beyond what is seen during WT aging
[22]. Both erythroid and lymphoid lineages were affected already during
fetal period in Mutators, and different hematopoietic progenitor cell
(HPC) populations were present in aberrant proportions [23]. Owing
to their HSC and HPC dysfunction, Mutators developed at 5-6 months
of age progressive and ultimately fatal anemia [18,25], which shared fea-
tures with human age-related anemia. Age-dependent increase in
mtDNA mutation load has been shown to exist in several human tissues,
and some reports have proposed increase also in HSCs, suggesting that
Mutator findings might be relevant for human anemia [27-29]. Anemia
is common in aging humans, and in one third of all cases the etiology re-
mains open [30]. Unexplained anemia among the elderly is often mild
and normocytic [26]. This is similar to the incipient anemia in Mutators
at the age of six months, suggesting that the mechanisms may be relat-
ed. In addition to SSC dysfunction, erythroid differentiation was shown
to be sensitive to mtDNA mutagenesis [31,32]. During erythrocyte
maturation, nucleus and organelles, including mitochondria, are se-
quentially removed. This removal was recently shown to be disturbed
in the Mutators: mtDNA mutagenesis delayed clearance of mitochondria
during erythropoiesis, and defective mitophagy was suggested to con-
tribute to this delayed clearance [31,32]. Prolonged presence of mito-
chondria in erythroid cells skewed timing of iron loading, and led to
increased non-protein bound iron accompanied with oxidative damage
in Mutator erythroid membranes [31]. As a result of oxidative damage,
the aged erythrocytes were prematurely captured and destroyed by
the spleen, accompanied with depletion of iron from the bone marrow
and leading to fatal anemia [31]. These findings indicated that mtDNA
mutagenesis can modify stem cell signaling and function, promoting
proliferation over stemness, and also affect erythroid differentiation,
leading to asynchrony of mitochondrial clearance and iron loading, all
contributing to development of severe Mutator anemia.

Mammalian brain manifests significant changes during aging, de-
spite being one of the organs with the lowest regenerative potential
and harboring only negligible numbers of neural stem and progenitor
cells (NSCs). However, the few NSCs present in adult brain reside in spe-
cific brain regions, like the subgranular zone (SGZ) of the hippocampus,
and seem to play a significant role in cognitive functions, by generating
new neurons to the brain circuitry throughout life [33,34]. While NSCs
are clearly not the sole factor underlying aging in brain and the extent
to which age-related cognitive decline depends on NSCs is not clear, it
is evident that aging reduces proliferation of NSCs [35,36]. Neurogenesis
declines during aging in mice, both in the hippocampal dentate gyrus
and in the subventricular zone (SVZ) [35,37], which is evidenced by de-
creased amount of quiescent nestin-positive neural stem cells (NSCs) in
aging SVZ. NSCs were also decreased in number in old Mutators, sug-
gesting decreased NSC quiescence as a result of mtDNA mutagenesis
[23]. Mutators did not show general neurodegeneration during their
shortened lifespan, but when crossed with APP/Ld mice, a well-
established model for Alzheimer's disease, mtDNA mutagenesis was
shown to exacerbate the AD pathogenesis [38]. These evidence suggest
that Mutators are prone to neurodegeneration, but do not manifest it,
because of their premature death due to anemia.

Mutator NSCs extracted from E12 embryos showed decreased self-
renewal ability in vitro, indicating a severe NSC defect already during
fetal life [23]. Further, Mutator fibroblasts showed compromised effi-
ciency when reprogramming to pluripotency, and Mutator iPSCs mani-
fested decreased clonality [39]. The dysfunction in NSC self-renewal, as
well as the HPC dysfunction and the decreased reprogramming efficien-
cy, were all rescued by treatment with n-acetyl-I-cysteine (NAC), a glu-
tathione precursor and a direct ROS scavenger, suggesting that the stem
cell phenotype in Mutators is caused by altered ROS/redox balance [23,
39]. Additional evidence pointing to a role for ROS in Mutator pheno-
type include increased intramitochondrial H,O, in Mutator iPSCs,
when measured by a ratiometric MitoB/MitoP probe, as well as in old
Mutator tissues; rescue of the Mutator iPSC and HPC phenotype by
MitoQ treatment, and rescue of the cardiac phenotype with overexpres-
sion of catalase in mitochondria [39-41]. Small intestine of the
Mutators, a tissue also dependent on active regeneration, showed mor-
phological changes typical for aged humans and rodents [42]. These
changes were consistent by disturbed SSC homeostasis and reduced in-
testinal stem/progenitor cell cycling [24]. Collectively, these data from
Mutator studies (Table 1) strongly suggested that accumulation of ran-
dom mtDNA point mutations disturbed ROS/redox signaling, leading to
small changes in ROS, not high enough to cause significant oxidative
damage, and led to SSC dysfunction, which explained the premature
aging phenotype in these mice, and connected the cellular mechanism
in Mutators to other progeria models, caused by nuclear DNA repair
defects.

Different wild-type mtDNA haplotypes have recently been sug-
gested to modify stem cell properties [44]. Mouse ES cells with identical
nuclear background, but different mtDNA haplotypes, showed diver-
gent expression profiles of nuclear genes involved in self-renewal,
differentiation and mitochondrial function [44]. Further, mtDNA haplo-
types also modified in vitro differentiation capacity of the ES cells [44].
While these findings could be partially contributed by nuclear-mtDNA
mismatch and consequent subtle mitochondrial dysfunction, they

Table 1
Increased mtDNA mutagenesis affects several stem cell compartments in mice.

Cell type Self-renewal Proliferation Differentiation Reference
Neural stem cells | in vitro | in vitro < in vitro [23]
Hematopoietic stem | in vivo | in vitro | in vivojvitro  [23,25,31,32]
cells
Intestinal stem cells | in vitro | in vitro < in vitro [24]
Induced pluripotent | in vitro 1 | in vitro [39,43]
stem cells in vivo/vitro




1382 KJ. Ahlqvist et al. / Biochimica et Biophysica Acta 1847 (2015) 1380-1386

raised an interesting question whether apparently neutral mtDNA vari-
ants could affect in vivo SSC maintenance and function in a genotype-
specific manner.

Asymmetric cell division allows stem cells to create two daughter
cells with distinct and separate cell fates. In a recent study, human
mammary stem cell-like cells were shown to apportion also mitochon-
dria, but not other organelles, asymmetrically during asymmetric cell
division [45]. The cells that retained aged mitochondria differentiated,
while those receiving mostly young mitochondria maintained stem
cell-like properties. Further, inhibition of mitochondrial fission inhibited
asymmetric segregation of mitochondria, and resulted in loss of
stemness properties in the progeny [45]. These data show that stem
cells rely on functional but quiescent mitochondria.

3. Metabolic switch is essential for stem cell function

A subset of adult stem cells remains in a dormant, quiescent state for
long periods of time. This actively maintained quiescence is important
for long-term functionality of stem cells. Quiescent stem cells have min-
imal basal metabolic activity, contain only few mitochondria and rely
mainly on glycolysis for their energy production [46,47]. Even though
mitochondria are few and mitochondrial respiration is low, stem cells
contain a functional respiratory chain. Active down-regulation of mito-
chondrial oxidative phosphorylation seems to be crucial for maintaining
SSC quiescence and self-renewal, probably to minimize production of
ROS, an active signaling molecule and promoter of differentiation of
SSCs [48]. This is consistent with the finding that some quiescent adult
stem cells, e.g. HSCs, reside in hypoxic niches [49-53]. In these cells,
the low oxygen tension has been reported to be sensed by hypoxia
inducible factor-1a (HIF-1a), a transcription factor regulating cellular
and systemic hypoxia response [54], which has been suggested to regu-
late cellular quiescence in SSCs by shifting the metabolism to glycolysis
[55]. In quiescent HSCs, so called long-term (LT-) HSCs, HIF-1a
upregulates pyruvate dehydrogenase kinase (Pdk) activity, leading to
decreased pyruvate dehydrogenase activity and shuttling of pyruvate
to anaerobic lactate dehydrogenase pathway, instead of being metabo-
lized to acetyl coenzyme A in the mitochondria. HSCs of HIF-1a ™/~ mice
were not able to switch to glycolytic metabolism and lost their repopu-
lation activity, i.e. the ability to engraft the bone marrow of an irradiated
recipient [46]. Overexpression of Pdk2 and Pdk4 in HIF-1c™~ HSCs res-
cued their repopulation ability [46]. Furthermore, in the hematopoietic
lineage of mice with conditional knockout of PTEN-like mitochondrial
phosphatase (Ptpmt1), HSCs could not shift from glycolytic to oxidative
metabolism, which led to increased HSC pools and differentiation de-
fects [56]. Lkb1 kinase, an evolutionary conserved regulator of energy
metabolism, was also shown to be important for maintaining HSC
quiescence [57-59]. This evidence indicates a crucial role for glycolytic
metabolism in stem cell quiescence, and for shift to oxidative mitochon-
drial metabolism upon commitment, maturation and differentiation.

Similar to SSCs, tight metabolic regulation is also important for plu-
ripotent stem cells. Mitochondrial uncoupling protein 2 (UCP2), highly
expressed in stem cells and down-regulated during differentiation,
has been shown to dictate cell fate decisions in human pluripotent
stem cells (hPSC) by influencing the metabolic switch from glycolysis
to mitochondrial oxidative phosphorylation [60,61]. Despite its name,
the main function of UCP2 seems not to be to uncouple mitochondria,
but to regulate the respiration rate by controlling metabolite transport
in the organelle [62]. Overexpression of UCP2 during early differentia-
tion of hPSCs blocked the metabolic shift from glycolysis to respiration
and repressed differentiation [61]. UCP2 has also an important role in
erythropoiesis, in proliferation of early erythroid progenitors [63]. Ery-
throid progenitors from UCP2 '~ mice showed increased levels of mito-
chondrial superoxide, whereas the cytosolic ROS was decreased, leading
to decreased activation of the ERK pathway and thus slow proliferation
rate [63]. Induced pluripotent stem cells (iPS cells) generated from
Mutator bone marrow cells, harboring increased mtDNA mutation

loads, were unable to switch from glycolytic to aerobic metabolism
when induced to differentiate to embryoid bodies (EB), resulting in a
growth defect in the differentiating EBs [43]. Also Mutator iPS cells
showed a growth defect despite WT-like ability to produce ATP [43]. Fur-
ther, metabolism has been shown to regulate reprogramming of somatic
cells to pluripotency. Inhibiting glycolysis reduced reprogramming
efficiency and augmenting glycolysis enhanced it in mouse embryonic
fibroblasts [64]. During reprogramming process, expression of glycolytic
genes preceded expression of genes governing self-renewal, suggesting
that the metabolic resetting is an early and active event [64]. All these
data support the conclusion that glycolysis and low respiratory activity
are important for maintenance of stemness of both somatic and pluripo-
tent stem cells, and oxidative metabolism through redox signaling
promotes progenitor commitment and differentiation.

4. Reactive oxygen species as determinants of SSC fate

Cellular ROS production is reflected by the oxidative activity of the
cell, the major ROS producer being the mitochondrial respiratory
chain. Superoxide, which is readily converted to hydrogen peroxide
(H,0,) by superoxide dismutase (SOD), is a byproduct of oxidative
phosphorylation [65,66]. Unlike superoxide, H,0; is able to cross mito-
chondrial membranes making it an important signaling molecule
[66-68]. ROS levels have been shown to modulate somatic stem cell
fate. Increase in ROS production upon aging in human mesenchymal
stem cells [69], with concomitant decrease of their regenerative poten-
tial and mitochondrial function suggests that mitochondrial metabolism
may contribute to SSC aging. When hematopoietic stem cells were ex-
tracted from bone marrow and sorted based on their intracellular ROS
activity, the ROS'Y cells had higher self-renewal potential than the
ROS"#" cells, which showed early HSC exhaustion after serial transplan-
tation. The self-renewal of the ROS™" cells was rescued by antioxidant
supplementation [70]. ROS activity also affected the in vitro differentia-
tion capacity of HSCs: ROS"#" cells showed myeloid bias similarly to
aged HSCs [70]. Indeed, ROS are established as differentiation factors
for HSCs [48]. In the epidermis ROS has been shown to promote differ-
entiation and certain level of ROS is essential for proper skin function
[71]. Conditional knock-out of mitochondrial transcription factor A
(TFAM) from the basal layer of epidermis resulted in ablation of respira-
tory chain, reducing oxygen consumption to minimal and thereby de-
creasing ROS, which led to enhanced proliferation and severely
disrupted differentiation of epidermal stem cells [71,72]. These data
show that ROS is a rheostat for stemness and proliferation—low ROS
boosts stem cell pool, and increased ROS - even if subtle - promotes
progenitor commitment and differentiation.

Functional decline of HSCs during aging has been linked to accumu-
lation of DNA damage in mouse models with defective DNA repair or
damage recognition, like the Atm ™~ or Fox01/3/4"" mice [20,21,73].
These models show decreased HSC quiescence manifesting as decreased
repopulation capacity and a shift towards myeloid differentiation, both
being features of aged HSCs [20,73]. Interestingly, also Atm ™~ and
Fox01/3/4"" mouse models showed increased ROS in their HSCs, and an-
tioxidant (NAC) treatment reversed the HSC phenotype and rescued the
repopulation defect [20,73]. In Atm '~ mice increased ROS activated
p38 MAPK, a member of the mitogen-activated protein kinase family,
leading to upregulation of p16™4¢ and p19" [74]. p16"™4® and p197,
which are transcribed from the same genetic locus, were originally char-
acterized as tumor suppressors. p16™“¢ and p19*” are regularly upreg-
ulated in senescent cells, where they restrict cells from entering the cell
cycle. In a recent GWAS meta-study INK4a/ARF was identified as the
locus genetically linked to the highest number of different age-
associated pathologies [75]. The role of INK4a/ARF transcripts in stem
cells is suggested to differ from that in committed cells [76]. Increased
expression of p16™4® and p19*7 associated with defective self-
renewal of HSCs has also been shown in Bmi-1~/~ mice [77], as well
as in WT HSCs with high ROS levels upon aging [70,78,79]. Disrupting
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Fig. 1. Schematic representation of mitochondrial ROS defense mechanisms and hypothet-
ical route of p38 MAPK-p16™* pathway activation by increased superoxide production
from the respiratory chain. Mitochondrial ROS defense pathways showing decreased
molecules in response to ROS in green and increased or activated molecules/proteins in
red. Enzymes are highlighted with blue. GR = glutathione reductase, GSH red = reduced
glutathione, GSSG ox = oxidized glutathione, GPx = glutathione peroxidase, SOD =
superoxide dismutase, PRxs = peroxiredoxins, redTRX = reduced thioredoxin,
oXTRX = oxidized thioredoxin, ASK-1 = apoptosis signal-regulating kinase 1, MKK3/
6 = dual specificity mitogen-activated protein kinase kinase 3 and 6, p38 MAPK = p38
mitogen-activated protein kinases, p16™%4* = cyclin-dependent kinase inhibitor 2A.

negative regulation of p16™4* and p19"”expression in Hmga2 ~~ mice
led to decreased NSC self-renewal, which was partially rescued by
simultaneous knock-out of INK4a/ARF locus [80]. The importance of
the p38 MAPK-p16"™4? pathway in SSC fate determination has also
been shown in NSCs with constitutively active apoptosis signal-
regulating kinase 1 (Ask1), a serine/threonine mitogen-activated pro-
tein kinase kinase kinase (MAP3KS5), which is upstream from p38
MAPK [81]. Ask1 is shown to be inhibited by reduced thioredoxin. It is
also shown that upon increased ROS, thioredoxin is oxidized leading
to autophosphorylation and activation of Ask1 [82,83]. The SSC pheno-
type in Mutator mice may well be related to induction of Ask1-p38
MAPK pathway by mtDNA mutagenesis.

The sensitivity of the stem cell pool to subtle changes in ROS levels
makes SSCs also sensitive to antioxidants. While n-acetyl-l-cysteine
treatment rescued both the NSC and HPC phenotypes in mtDNA
Mutator embryos in vivo [23], treatment with mitochondria-targeted
ubiquinone (MitoQ) had contradictory effects on SSCs, and rescued
the Mutator HPC phenotype but was harmful to NSCs, both Mutator
and wild-type, in the same embryos [39]. MitoQ, a strong antioxidant
that accumulates several hundred-fold within mitochondria, was
more potent than NAC in ameliorating self-renewal of Mutator stem
cells in vitro but showed dose-dependent toxicity to both NSCs and
iPSCs also in vitro, with NSCs being most vulnerable [39]. These data
indicate sensitivity of SSCs to ROS, and support the conclusion that
redox-linked mechanism is relevant both for SSC dysfunction in
mtDNA Mutators and in progeroid mice with genomic DNA repair de-
fects. Mitochondrial ROS defense mechanisms and pathways discussed
in this chapter are shown in Fig. 1.

5.NAD™ levels regulate SSC function via mitochondrial sirtuin Sirt3

NAD™/NADH ratio is a major regulator of cellular nutrition status, by
activation of sirtuins and mitochondrial biogenesis upon restricted nu-
trition [84]. This ratio is regulated by metabolic activities. Respiration
produces NAD™, when NADH is oxidized by respiratory chain Complex
I. Thus the metabolic shift during differentiation, from glycolytic to oxi-
dative mode, is expected to change the NAD"/NADH ratio. In order to
maintain the glycolytic flux in stem cells, NAD" has to be constantly
regenerated by conversion of pyruvate to lactate. This reaction uses
NADH as a coenzyme and converts it back to NAD™ [85]. NAD* levels
have been shown to modulate both differentiation and self-renewal of
neural stem cells. This has been shown by genetically or pharmacologi-
cally inactivating nicotinamide phosphoribosyltransferase (Nampt), the
rate-limiting enzyme in NAD™" salvage pathway. Ablation of Nampt in
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Fig. 2. Possible mechanism by which decreased NAD*/NADH ratio could affect mitochon-
drial ROS/redox status via Sirt3. Upon decreased NAD™ pool, Sirt3 is unable to deacetylate
its targets, leading to weakened ROS defense and decreased NADPH levels. LDH = lactate
dehydrogenase, UCP2 = uncoupling protein 2, PDH = pyruvate dehydrogenase, pdk2/
4 = pyruvate dehydrogenase kinases 2/4, IDH2 = isocitrate dehydrogenase 2, SOD2 =
superoxide dismutase, FoxO3 = forkhead box 03, Sirt3 = sirtuin 3.

adult mice reduced the NSC pool and proliferation in vivo [86]. Both
NAD™ and Nampt levels decreased during aging in mouse hippocam-
pus, especially in nestin-positive quiescent neural stem cells [86], as
did neurogenesis [87], while supplementation with nicotinamide
mononucleotide (NMN), the substrate of Nampt, restored the decrease
in nestin-positive neural progenitor cells [86]. The decreasing NAD "/
NADH ratio could therefore contribute to stem cell dysfunction during
aging [88,89]. Increasing NAD/NADH ratio is sensed by sirtuins,
which are a family of lysine-modifying acylases utilizing NAD™ as a co-
factor, while controlling organisms' response to nutrients [90]. Three
out of seven known mammalian sirtuins are mitochondrial, including
Sirt3, which deacetylates and thus activates several proteins involved
in ROS defense [91-93]. Sirt3 is essential in HSC maintenance during
aging, and has been reported to enhance superoxide dismutase
(SOD2) activity and reduce mitochondrial superoxide [94]. Young
Sirt3 ™~ mice had normal HSC function, however during aging the
HSC repopulation activity decreased progressively and prematurely,
similarly to Mutators [94]. Upregulation of Sirt3 in aged HSCs, as well
as NAC supplementation for Sirt3 ™~ HSCs improved their functionality
[94]. Furthermore, defects in Sirt3 target proteins resulted in SSC dys-
function. For example transcription factor forkhead box 03 (Fox03)
contributed to HSC self-renewal and quiescence, as well as for neural
stem cell self-renewal and lineage determination [95-97]. In ovaries,
Fox03 regulated primordial follicle activation and Fox03 ™~ mice
showed premature ovarian failure and infertility, whereas overexpres-
sion of constitutively active FoxO3 led to enhanced fertility and post-
poned onset of menopause in mice [98,99]. Sirt3 deacetylates and thus
activates isocitrate dehydrogenase 2 (IDH2), a mitochondrial enzyme
that converts NADP™ to NADPH [100,101]. IDH2-mediated reduction
of NADP* accounts for one fourth of the mitochondrial NADPH pool
suggesting that failure to activate IDH2 would also decrease reduced
glutathione and thioredoxin, and therefore weaken the ROS defense
system [100]. Sirt3 has been reported to interact with IDH2 in aging-
related hearing loss, but no role has yet been reported for it in somatic
stem cells [100]. Fig. 2 illustrates pathways by which NAD*/NADH
ratio could affect mitochondrial ROS/redox status via Sirt3.

6. Conclusions
Somatic stem cells are highly sensitive to changes in metabolic

environment, and metabolic cues guide cellular transitions from
quiescence to activation and from self-renewal to differentiation.
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Mitochondria are in the center of energy metabolism, but they are
also important contributors to sensing and signaling of cellular nutri-
ent and energy status. Mitochondrial theory of aging suggested
mitochondrial dysfunction to lead to increased ROS, causing cellular
damage and further aggravating the aging process. Recent knowl-
edge has modified this hypothesis. Reactive oxygen species, espe-
cially H,0, produced by the mitochondria, as well as NAD +/NADH
ratio, are crucial signals for stem cell function. The contribution of
mitochondria to aging-related symptoms may therefore be mediated
by subtle changes in redox-mediated signaling in SSCs, instead of ox-
idative damage on tissues. Sensitivity to redox signaling is consistent
with pluripotent and somatic stem cells relying heavily on non-
oxidative glycolysis, requiring mitochondrial quiescence for main-
taining SSC quiescence. This makes SSCs sensitive to antioxidants
as well as small changes in OXPHOS activity, rendering mitochondria
key organelles to modulate stem cell functions. Thus, despite their
highly glycolytic nature, SSCs rely heavily on the integrity of mito-
chondria and mtDNA to maintain their normal function, explaining
why mitochondrial defects in SSCs lead to premature aging-like
symptoms.
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